Holidays Assignment (2024)

Class – XI

Mathematics

(Statistics)

Formulae of the chapter:

(For ungrouped Data)

- **1.** Mean Deviation about mean $=\frac{\sum |x_i \bar{x}|}{n}$, where \bar{x} is the mean
- 2. Mean Deviation about median $=\frac{\sum |x_i M|}{n}$, where M is the mean

3. Variance
$$(\sigma^2) = \frac{\sum (x_i - \bar{x})^2}{n}$$

4. Standard Deviation (σ) = $\sqrt{Var(X)}$

(For grouped Data: Discrete and Continuous Frequency Distribution)

5. Mean Deviation about mean $=\frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}$, where \bar{x} is the mean 6. Mean Deviation about median $=\frac{\sum f_i |x_i - M|}{\sum f_i}$, where M is the mean 7. Variance $(\sigma^2) = \frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}$ 8. Standard Deviation $(\sigma) = \sqrt{Var(X)}$

9. Standard Deviation $(\sigma) = \frac{1}{n}\sqrt{n\sum f_i x_i^2 - (f_i x_i)^2}$, where $n = \sum f_i$ Or S. D (by short cut method) $= \frac{h}{n}\sqrt{n\sum f_i y_i^2 - (f_i y_i)^2}$, where $y_i = \frac{x_i - a}{h}$, *a* is assumed mean, *h* is class size

Using the above formulae, solve the following questions (on A4 size sheets):

1. Find the mean deviation about the mean as well as about the median for the following series:

12, 3, 18, 17, 4, 9, 17, 19, 20, 15, 8, 17, 2, 3, 16, 11, 3, 1, 0, 5

2. Find the mean deviation about the mean for the following data:

				0		
x _i	2	5	6	8	10	12
f_i	2	8	10	7	8	5

3. Find the mean deviation about the median for the following data:

						U		
x_i	3	6	9	12	13	15	21	22
f_i	3	4	5	2	4	5	4	3

4. Find the mean deviation about the mean for the following data:

			-	
Class Intervals	4 - 8	8 - 12	12 - 16	16 - 20
Frequency	3	6	4	7

5. Find the mean deviation about the median for the following data:

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Number	8	10	10	16	4	2
of girls						

- 6. Find the varience ad standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59
- 7. Calculate the mean and standard deviation for the following data:

Size of the item	6	7	8	9	10	11	12
Frequency	3	6	9	13	8	5	4

8. Calculate the mean and standard deviation for the following data:

Class Intervals	25-35	35 - 45	45 - 55	55 - 65	65 - 75
Frequency	21	20	16	25	18

9. Two plants A and B of a factory show the following results about the number of workers and the wages paid to them:

	А	В
No. of workers	5000	6000
Average monthly wages(in Rs.)	2500	2500
Varience of distribution of	81	100
wages		

Which plant of the factory, A or B, is more consistent in individual wages?

- 1) If $\sin\theta = \cos\theta$, find the value of ' θ '.
- 2) If $\sin A = \frac{3}{5}$, calculate $\cos A$
- 3) Evaluate: $\cos 48^{\circ} \cos 42^{\circ} \sin 48^{\circ} \sin 42^{\circ}$
- 4) If A, B and C are the interior angles of a triangle ABC, then show that $tan\left(\frac{B+C}{2}\right) = cot\left(\frac{A}{2}\right).$
- 5) Prove that $\sqrt{\frac{1+\cos A}{1-\cos A}} = \csc ecA + \cot A$.

6) If
$$\cos ec\theta = \frac{13}{12}$$
, evaluate $\frac{2\sin\theta - 3\cos\theta}{4\sin\theta - 9\cos\theta}$

- 7) In a right angled $\triangle ABC$, $\angle B = 90^{\circ}$. If $\frac{BC}{AB} = \frac{1}{\sqrt{3}}$, then find $\frac{AB}{AC}$
- 8) Express the trigonometric ratioscos A, tan A and sec A in terms of sin A

9) In \triangle ABC, right-angled at C find cos A, tan A and cosec B if sin A = $\frac{24}{25}$

10) In triangle ABC, right-angled at B, if $\tan A = \frac{1}{\sqrt{3}}$, find the value of:

(i) $\sin A \cos C + \cos A \sin C$ (ii) $\cos A \cos C - \sin A \sin C$

- 11) Prove that sec A $(1 \sin A)(\sec A + \tan A) = 1$.
- 12) If A, B and C are interior angles of a triangle ABC, then show that $\sin \frac{B+C}{2} = \cos \frac{A}{2}$

13) Evaluate:
$$\frac{\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ + 5\cos^2 90^\circ}{\cos ec 30^\circ + \sec 60^\circ - \cot^2 30^\circ}$$

- 14) Prove that $\frac{\cos A \sin A + 1}{\cos A + \sin A 1} = \cos ecA + \cot A$ using the identity $\cos ec^2 A = 1 + \cot^2 A$.
- 15) Write all the other trigonometric ratios of $\angle A$ in terms of sec*A*.

16) Prove the following identity, where the angles involved are acute angles for which the expression is defined: $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$

17) In an acute angled triangle ABC if $sin(A + B - C) = \frac{1}{2}$ and $cos(B + C - A) = \frac{1}{\sqrt{2}}$ find $\angle A$, $\angle B$ and $\angle C$

- 18) Prove that : $\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{1-\tan A}{1-\cot A}^2 = \tan^2 A$
- 19) Evaluate: (i) $\frac{\sin^2 63^0 + \sin^2 27^0}{\cos^2 17^0 + \cos^2 73^0}$ (ii) $\sin 25^\circ \cos 65^\circ + \cos 25^\circ \sin 65^\circ$
- 20) In $\triangle OPQ$, right-angled at P, OP = 7 cm and OQ PQ = 1 cm. Determine the values of sin Q and cos Q.
- 21) If B and Q are acute angles such that $\sin B = \sin Q$, then prove that B = Q.

22) If
$$\sin(A - B) = \frac{1}{2}$$
, $\cos(A + B) = \frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ}$, $A > B$, find A and B.

- 23) If $\sin 3A = \cos (A 26^\circ)$, where 3A is an acute angle, find the value of A.
- 24) Prove that $\frac{\sin A \cos A + 1}{\sin A + \cos A 1} = \frac{1}{\sec A \tan A}$, using the identity $\sec^2 \theta = 1 + \tan^2 \theta$.
- 25) Prove that $(\cos ecA \sin A)(\sec A \cos A) = \frac{1}{\tan A + \cot A}$.