Holidays Assignment (2024)

Class - XI

Mathematics

(Statistics)

Formulae of the chapter:

(For ungrouped Data)

1. Mean Deviation about mean $=\frac{\Sigma\left|x_{i}-\bar{x}\right|}{n}$, where \bar{x} is the mean
2. Mean Deviation about median $=\frac{\sum\left|x_{i}-M\right|}{n}$, where M is the mean
3. $\operatorname{Variance}\left(\sigma^{2}\right)=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n}$
4. Standard Deviation $(\sigma)=\sqrt{\operatorname{Var}(X)}$

(For grouped Data: Discrete and Continuous Frequency Distribution)

5. Mean Deviation about mean $=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{\sum f_{i}}$, where \bar{x} is the mean
6. Mean Deviation about median $=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}$, where M is the mean
7. $\operatorname{Variance}\left(\sigma^{2}\right)=\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{\sum f_{i}}$
8. Standard Deviation $(\sigma)=\sqrt{\operatorname{Var}(X)}$
9. Standard Deviation $(\sigma)=\frac{1}{n} \sqrt{n \sum f_{i} x_{i}^{2}-\left(f_{i} x_{i}\right)^{2}}$, where $n=\sum f_{i}$

Or S. D (by short cut method) $=\frac{h}{n} \sqrt{n \sum f_{i} y_{i}{ }^{2}-\left(f_{i} y_{i}\right)^{2}}$, where $y_{i}=$ $\frac{x_{i}-a}{h}, a$ is assumed mean, h is class size

Using the above formulae, solve the following questions (on A4 size sheets):

1. Find the mean deviation about the mean as well as about the median for the following series:
$12,3,18,17,4,9,17,19,20,15,8,17,2,3,16,11,3,1,0,5$
2. Find the mean deviation about the mean for the following data:

x_{i}	2	5	6	8	10	12
f_{i}	2	8	10	7	8	5

3. Find the mean deviation about the median for the following data:

x_{i}	3	6	9	12	13	15	21	22
f_{i}	3	4	5	2	4	5	4	3

4. Find the mean deviation about the mean for the following data:

Class Intervals	$4-8$	$8-12$	$12-16$	$16-20$
Frequency	3	6	4	7

5. Find the mean deviation about the median for the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of girls	8	10	10	16	4	2

6. Find the varience ad standard deviation for the following data:
$57,64,43,67,49,59,44,47,61,59$
7. Calculate the mean and standard deviation for the following data:

Size of the item	6	7	8	9	10	11	12
Frequency	3	6	9	13	8	5	4

8. Calculate the mean and standard deviation for the following data:

Class Intervals	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	21	20	16	25	18

9. Two plants A and B of a factory show the following results about the number of workers and the wages paid to them:

	A	B
No. of workers	5000	6000
Average monthly wages(in Rs.)	2500	2500
Varience of distribution of wages	81	100

Which plant of the factory, A or B , is more consistent in individual wages?

1) If $\sin \theta=\cos \theta$, find the value of ' θ '.
2) If $\sin \mathrm{A}=\frac{3}{5}$, calculate $\cos \mathrm{A}$
3) Evaluate: $\cos 48^{\circ} \cos 42^{\circ}-\sin 48^{\circ} \sin 42^{\circ}$
4) If A, B and C are the interior angles of a triangle ABC , then show that $\tan \left(\frac{B+C}{2}\right)=\cot \left(\frac{A}{2}\right)$.
5) Prove that $\sqrt{\frac{1+\cos A}{1-\cos A}}=\operatorname{cosec} A+\cot A$.
6) If $\operatorname{cosec} \theta=\frac{13}{12}$, evaluate $\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}$.
7) In a right angled $\triangle \mathrm{ABC}, \angle B=90^{\circ}$.If $\frac{B C}{A B}=\frac{1}{\sqrt{3}}$, then find $\frac{A B}{A C}$
8) Express the trigonometric ratioscos $\mathrm{A}, \tan \mathrm{A}$ and $\sec \mathrm{A}$ in terms of $\sin \mathrm{A}$
9) In $\triangle \mathrm{ABC}$, right-angled at C find $\cos \mathrm{A}, \tan \mathrm{A}$ and $\operatorname{cosec} \mathrm{B}$ if $\sin \mathrm{A}=\frac{24}{25}$
10) In triangle $A B C$, right-angled at B, if $\tan A=\frac{1}{\sqrt{3}}$, find the value of:
(i) $\sin \mathrm{A} \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$ (ii) $\cos \mathrm{A} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{C}$
11) Prove that $\sec \mathrm{A}(1-\sin \mathrm{A})(\sec \mathrm{A}+\tan \mathrm{A})=1$.
12) If A, B and C are interior angles of a triangle ABC , then show that $\sin \frac{B+C}{2}=\cos \frac{A}{2}$
13) Evaluate: $\frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}$
14) Prove that $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$.
15) Write all the other trigonometric ratios of $\angle \mathrm{A}$ in terms of $\sec A$.
16) Prove the following identity, where the angles involved are acute angles for which the expression is defined: $\quad \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec \mathrm{A}+\tan \mathrm{A}$
17) In an acute angled triangle $A B C$ if $\sin (A+B-C)=\frac{1}{2}$ and $\cos (B+C-A)=\frac{1}{\sqrt{2}}$ find $\angle A, \angle B$ and $\angle C$
18) Prove that: $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1-\tan A}{1-\cot A}{ }^{2}=\tan ^{2} A$
19)

Evaluate: (i) $\frac{\sin ^{2} 63^{0}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{0}+\cos ^{2} 73^{0}} \quad$ (ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
20) In $\triangle O P Q$, right-angled at $P, O P=7 \mathrm{~cm}$ and $O Q-P Q=1 \mathrm{~cm}$. Determine the values of $\sin \mathrm{Q}$ and $\cos \mathrm{Q}$.
21) If B and Q are acute angles such that $\sin B=\sin Q$, then prove that $B=Q$.
22) If $\sin (\mathrm{A}-\mathrm{B})=\frac{1}{2}, \cos (\mathrm{~A}+\mathrm{B})=\frac{1}{2}, 0^{\circ}<\mathrm{A}+\mathrm{B} \leq 90^{\circ}, \mathrm{A}>\mathrm{B}$, find Aand B .
23) If $\sin 3 \mathrm{~A}=\cos \left(\mathrm{A}-26^{\circ}\right)$, where 3 A is an acute angle, find the value of A .
24)

Prove that $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}$, using the identity $\sec ^{2} \theta=1+\tan ^{2} \theta$.
25)

Prove that $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$.

